Terra SRBAVG Ed2D: Validation/Status

D. Doelling, D. Keyes, M. Nordeen AS&M

D. Young, T. Wong NASA Langley Research Center

C. Nguyen, R. Raju, J. Boghosian SAIC

6th CERES-II Science Team Meeting Exeter, England, October, 2006

Outline

- Globally Gridded CERES Time in Space Averaged (TISA) Products
 - What CERES monthly gridded products are available?
 - Order at http://eosweb.larc.nasa.gov/ under CERES
 - How do I know which one is best for my research?
- CERES Temporal Interpolation latest release uses geostationary data between CERES observations
 - Must produce climate quality monthly mean fluxes that maintain the CFRFS instrument calibration
 - How successfully do we remove temporal sampling errors?
- Comparison of CERES global fluxes with other datasets
 - How do the CERES gridded TOA product fluxes and cloud forcing compare?

CERES Monthly Gridded Products

- CERES products
 - Regional radiative fluxes and cloud properties at TOA, surface and profile levels
- There are 4 main CERES product groups
 - ERBE-like
 - Uses ERBE algorithms to derive fluxes
 - SRBAVG Non-GEO
 - Uses the CERES ADMs to derive fluxes
 - SRBAVG GEO
 - Adds geostationary fluxes to improve temporal sampling
 - SYN/AVG/ZAVG
 - Produces global synoptic maps and radiative transfer fluxes

ERBE-like Product

- Product Features:
 - Based on ERBE algorithms and in the same format (ES-4 & ES-9)
 as the original ERBE scanner dataset (1985-1989)

- Appropriate Usage:
 - To compare with historical ERBE (1985-1989) fluxes to ensure that flux differences are not associated with CERES algorithm improvements

Current Editions of ERBE-like

Edition 1

- First look at CERES fluxes
- Usually available within 2 months
- No on orbit calibration corrections
- Use with caution

Edition 2

- Contains on orbit calibration corrections
- Compare with ERBE

SRBAVG nonGEO Product

- Product Features:
 - TOA fluxes and MODIS cloud properties

- Appropriate Usage:
 - To evaluate CERES ADM improvements
 - Fluxes and cloud properties are sampled only during Terra overpasses

Aug 2002 Clear-sky Albedo

ERBE like mean

ERBE like - nonGEO

- The CERES ADMs and scene identification is an improvement over ERBE-like
 most notable in clear-sky identification
- This will effect cloud forcing fluxes

SRBAVG GEO Product

- Product Features:
 - TOA and surface fluxes and MODIS/GEO cloud properties
 - Uses 3-hourly geostationary derived fluxes and cloud properties to interpolate between CERES observations

- Appropriate Usage:
 - The SRBAVG GEO product is the most robust CERES TOA monthly mean flux product and of climate quality

SRBAVG-GEO Monthly Gridded Products Jan 2002

Why Include GEO Fluxes?

- Most regions sampled twice a day with either Terra or Aqua
- Terra & Aqua sample the poles up to 14 times/day
- Even after combining Terra and Aqua 8 hour gaps exist

• 3-hourly GEO fluxes adequately samples the diurnal cycle between ±60° latitude

Monthly Hourly Albedo and SW Flux over Ecuadorian Stratus for Terra, July 2001

• ERBE temporal interpolation assumes constant meteorology (cloud properties) through out the day

nonGEO - GEO SW 14:30 monthly hourly mean Dec 2002

- Blue afternoon convection, Red afternoon cloud clearing
- Regional instantaneous differences can be ~ 100 Wm⁻²

nonGEO - GEO SW monthly mean Dec 2002

- Blue afternoon convection, Red afternoon cloud clearing
- Regional monthly differences can be ~ 20 Wm⁻²

Clear-sky TOA LW Flux

June 2001, Terra FM-1, Arizona Desert

- ERBE temporal interpolation linearly interpolates between measurements over oceans
- Over land a half-sine fit is used to model diurnal heating if night time observations exist

GEO LW 16:30 (PM) - 7:30 (AM) monthly hourly mean Dec 2002

- For land: blue afternoon convection, red thermal lag
- PM-AM differences can be ~ 30 Wm⁻²

nonGEO - GEO LW monthly mean Dec 2002

On a global basis the diurnal signal is small

SYN/AVG/ZAVG Product

Product Features:

-Surface and atmosphere Fu-Liou radiative transfer modeled fluxes consistent with CERES observed TOA fluxes

Appropriate Usage:

-SYN fluxes and cloud properties can be compared directly with climate model results at the 3-hourly or monthly level

Tuned (SARB) - Observed (GEO) July 2002

• Differences to be discussed by Fred Rose

CERES Instaneous Gridded Data Products

CERES PRODUCT	TRMM	Terra	Aqua
ERBE-like	Ed2	Ed1CV (Mar00-	Ed1CV (Jul02-
ES-9	Jan98-Aug98	present-2months)	present-2months)
ERBE gridded ES-8 fluxes	& Mar00	Ed2 (Mar00-Dec05)	Ed2 (Jul02-Dec05)
<u>SFC</u>	Ed2B	Ed2C	Ed2A
CERES local time gridded fluxes	Jan98-Aug98	(Mar00-Dec05)	(Jul02-Dec05)
and cloud products from SSF	& Mar00		
FSW	Ed2C	ED2B	Ed2A
CERES GMT synoptic gridded	Jan98-Aug98	(Mar00-Dec05)	(Jul02-Dec05)
fluxes from SSF and CRS	& Mar00		Jan_2007
<u>SYN</u>		Beta3 (Jan02-Dec02)	Beta4
SARB 3-hourly syntopic gridded		Jan_2007	(Jul00-Jun03)
parameters		Beta4 (Mar00-Feb03)	Oct_2007
		Oct_2007	

Completed, Projected

- First look at SSF and daily gridded CERES fluxes are available at FLASHFLUX within 6 days of real-time, (currently using Beta versions soon to be an Edition)
 - FLASHFLUX SSF use the same CERES ED2 routines and calibrated with the last update(~6 month delay), a separate product for Terra and Aqua
 - Daily gridded product uses the nonGEO ED2 algorithm but combines Terra and Aqua
 - http://eosweb.larc.nasa.gov/PRODOCS/flashflux/table_flashflux.html

CERES Monthly Gridded Average Data Products

CERES PRODUCT	TRMM	Terra	Aqua
ERBE-like Monthly mean ERBE-like product ES-4, ES-9	Ed2 Jan98-Aug98	Ed1CV (Mar00- present-2months) Ed2 (Mar00-Dec05)	Ed1CV (Jul02- present-2months) Ed2 (Jul02-Dec05)
SRBAVG Monthly mean nonGEO and GEO products	Ed2B Jan98-Aug98	Ed2D (Mar00-May04) Ed2D (Jun04-Dec05) Mar_2007 *	Ed2A (Jul02-May04) May_2007
AVG/ZAVG Monthly mean synoptic SARB product		Beta3 (Jan02-Dec02) Jan-2007 Beta4 (Mar00-Feb03) Oct_2007	Beta4 (Jul02-Jun03) Oct_2007

Completed, Projected

- SYN 3-hourly TOA/Surface/Profile Flux and Cloud Averages, same schedule as AVG/ZAVG
- SRBAVG-Daily and ISCCP-like cloud pressure/optical depth datasets due Jan 2007
- Users must apply REV1 to all Ed2 SW fluxes, proceedure in DQS

SRBAVG-Daily

- Separate the GEO and nonGEO flux and cloud parameters
 - SRBAVG-daily<u>1</u> is the GEO (GEO & CERES) TOA, surface fluxes and clouds
 - SRBAVG-daily<u>2</u> is the nonGEO (CERES-only) TOA fluxes and MODIS clouds
- SRBAVG-daily2: also includes the MODIS product aerosols
 - daily 0.55µm Land aerosols (not in SRBAVG1)
 - daily 0.55μm, 0.87μm, 2.13μm Ocean aerosols
 - 0.65µm and 1.6µm (Ignatov aerosols) in SRBAVG1 product
 - Monthly zonal incoming solar flux
 - Daily Snow/Ice coverage maps (snow+ice+IGBP)

SRBAVG-ISCCPd2like

- GOAL: produce monthly mean cloud properties consistent with ISCCP D2 product format
 - Average cloud properties as a function of cloud height and optical depth
- User community already familiar with data format

SRBAVG-ISCCPd2like

- Separate GEO and MODIS daytime (<78° SZA) cloud properties
 - SRBAVG-ISCCPd2like<u>1</u> is GEO-only (60°N-60°S)
 - SRBAVG-ISCCPd2like2 is MODIS-only
- Classify each of the regional 4 cloud layer observation according to ISCCP cloud types
- Place each observation into one of the eight 3-hourly GMT bins
 - GEO-only is 3-hourly data (60°N-60°S)
 - MODIS-only is usually observed once during daytime
 - GMT bin is based on longitude, due to Terra sun-synch orbit
 - The 9th GMT is the monthly mean
 - MODIS-only 9th GMT bins is essentially the 10:30 AM local bin
- SRBAVG-ISCCPd2like structure
 - (mean)x(360by180 regions)x(15 cloud types)x(9 GMT)

ISCCP 15 daytime cloud types

Cloud top (mb)			
50-440	Cirrus	Cirrus-stratus	Deep Convective
High	ice=13	ice=14	ice=15
440-680	Alto-cumulus	Alto-stratus	Nimbo-stratus
Mid	liq=7, ice=10	liq=8, ice=11	liq=9, ice=12
1000-680	Cumulus	Strato-cumulus	Stratus
Low	liq=1, ice=4	liq=2, ice=5	liq=3, ice=6
Cloud optical depth	0.0-3.6	3.6-23	23-380
	Thin	Mid	Thick

SRBAVG-ISCCPd2like parameters

Cloud Parameter	MODIS-only	GEO-only	
Cloud Fraction	X	X	
Effective Pressure	X	X	
Effective	X	X	
Temperature			
Optical Depth	X	X	
Liquid/Ice Water Path	X	X	
Particle size (radius, diameter)	X		
Infrared Emissivity	X		
# of days/GMT box	X	X	

Langley DAAC Ordering Web Page

CERES Level 3 Data Sets

Level 1B Data Sets | Level 2 Data Sets | CERES Data Sets

The CERES data products are written in HDF format. (Information on HDF)

Available Level 3 Data Sets

(Monthly Averages)

CERES Data Product	Frequency	Approximate File Size	Parameter List
ERBE-like Geographical Averages (ES-4)		8.8 MB	<u>ES-4</u>
TOA/Surface Averages (SRBAVG)		963/1171 MB	<u>SRBAVG</u>
ERBE-like Regional Averages (ES-9)	1/Month	72.4 MB	<u>ES-9</u>
Gridded Single Satellite Fluxes and Clouds (FSW)		644 MB	<u>FSW</u>
Gridded TOA/Surface Fluxes and Clouds (SFC)		325 MB	<u>SFC</u>

For convenience in ordering a specific CERES data product through the Langley Web Ordering Tool, select the Data Set Name in the tables below.

SRBAVG Daily SRBAVG ISCCP ES-4 **SRBAVG** ES-9 FS₩ SFC Daily TOA/Surface Averages (SRBAVG-Daily): Daily regional, zonal, and global averages of the TOA and surface LW and SW fluxes and cloud parameters for each 1-degree equal-angle region. (SRBAVG-Daily1 files contain GEO flux and cloud parameters, SRBAVG-Daily2 files contain non-GEO flux and cloud parameters) Select Parameters: Clear-sky and All-sky TOA Fluxes, Surface (Radiative) Fluxes, OLR, Clear-sky and All-sky Albedo, Cloud Properties, Surface Types Complete Parameter List Documents: Description/Abstract. Temporal Coverage Data Products Data Set Name Sample Software Spacecraft (Select name to order) Catalog (Monthly) Daily SRBAVG files: CER SRBAVG-Daily Terra-FM1-MODIS Edition2D. Terra Readme | DPC SRBAVG R3V4 03/2000 - 02/2003 CER SRBAVG-Daily Terra-FM2-MODIS Edition2D. (covers opened 02/25/2000) Read Package (C) Quality Summary.

GEO Narrowband to Broadband

- GEO visible and IR radiances are calibrated against MODIS
- GEO Cloud properties
 - Uses subset of CERES MODIS cloud algorithm based on VIS and IR radiances, need to convert radiances into fluxes
- GEO Narrowband to Broadband radiance conversion
 - First adjust GEO radiance to MODIS using models
 - MODIS equivalent to broadband radiance using model based on coincident MODIS and CERES measurements
- CERES ADMs are used to convert GEO broadband radiances into fluxes
- GEO derived LW hourly flux data stream is normalized with CERES measurements at observed CERES times
 - Normalization of GEO SW flux data stream with CERES caused significant regional biases and functionality with SZA, VZA and cloud amount
- GEO derived instantaneous SW fluxes are regressed monthly against coincident CERES observed fluxes over a 5°x5° domain

SW GEO-CERES Ocean Biases for Jan 2001

• GEO Biases <3% as a function of cloud amount, SZA and VZA

GEO Derived Flux Validation

- Aqua Terra Comparisons
 - Tests the instantaneous interpolation accuracy
- GEO calibration sensitivity study (VIS ±5%, IR ±5%)
 - Test effectiveness of GEO-CERES normalization
- 1 vs 3 hourly GEO derived fluxes
 - Tests for temporal sampling sensitivity
- Comparison of GEO surface fluxes with Surface flux measurements
 - Surface network provides an independent high temporal resolution data set
- Comparison of GEO BB fluxes with SARB fluxes
 - Consistency between cloud properties and fluxes
- Principal component (EOF) analysis of flux fields
 - Test for potential GEO viewing artifacts
- GEO derived directional models
 - Tests the NB-BB consistency with SZA
- GERB will ultimately provide the best independent high-resolution data set for testing the interpolation of GEO data

GEO Calibration Sensitivity

- GEO calibration sensitivity study
 - Test the effectiveness of the GEO-CERES normalization
- GEO imager data
 - Poorly calibrated
 - GEO radiances are calibrated against MODIS
 - Calibration accuracy VIS 3-5% and ~1% IR
- Method
 - Modify the GEO radiances by ±5%
 - Reprocess GEO cloud analysis and rederive GEO fluxes
 - Compare monthly mean fluxes to assess impact

Change in Total-Sky TOA SW Flux, July 2002 (IR+5%) - (IR-5%) (VIS+5%) - (VIS-5%)

BIAS: 0.10 Wm⁻² (0.11%) Regional RMS: 0.81 Wm⁻² (0.89%)

BIAS: 0.01 Wm⁻² (0.01%)

Regional RMS: 0.70 Wm⁻² (0.76%)

- Plotted differences are for 10% change in calibration
 - 2x the expected uncertainty in SW, and 10x in LW

Principal Component Analysis

- Purpose
 - Test for potential GEO viewing geometry artifacts
 - Looking for GEO satellite patterns
- Method
 - Analyze TOA LW and SW Flux fields
 - (360 longitude)x(180 zones)x(36 months)
- Search for EOF GEO artifacts
 - Compare nonGEO- GEO fluxes de-seasonalized fluxes
 - Deseasonalized fluxes very sensitive to GEO calibration issues

EOF Analysis Look for GEO viewing artifacts

ISCCP cloud amount, Feb 1994

MET-7 GMS-5 GOES9 GOES8

NASA Langley Research Cente

ISCCP cloud amount, Jan 1994-Dec 1996, de-seasonalized

EOF Analysis Look for GEO viewing artifacts

ISCCP cloud amount, Feb 1994

MET-7 GMS-5 GOES9 GOES8

NASA Langley Research Cente

ISCCP cloud amount, Jan 1994-Dec 1996, de-seasonalized

- No GEO artifacts observed in the SRBAVG-GEO fluxes
- De-seasonalized flux EOFs tend to bring out the GEO viewing artifacts

Surface Flux Comparison Purpose

- Test CERES-derived surface fluxes with the surface data network
- Surface flux data is one of the few independent high resolution datasets available

Surface Flux Comparisons

- LPLA Longwave fluxes (Model B, Gupta)
 - Surface longwave fluxes are independent from TOA
 - GEOS4 atmospheric state vertical profiles
 - GEO (low) cloud base heights
- LPSA shortwave fluxes (Model B, Gupta)
 - SW TOA major component
 - Cloud Amount
 - Cloud optical depth
- SRBAVG surface fluxes are from the GEO product
 - After temporal interpolation of TOA fluxes, compute Model B surface flux for every hourbox
- Monthly site surface fluxes from CAVE
 - ARM, SURFRAD, CMDL, and BSRN quality controlled surface radiometer networks
 - 6 years of monthly fluxes per station (Mar00 to Dec05)
 - 28 stations across the globe

Surface Sites Used In Comparison

Comparison of ground site and SRBAVG monthly surface fluxes (Mar00-Dec05)

Biases are consistent with SOFA on SSF

Comparison of Monthly Surface LW√ fluxes 12 month running means, (Mar00-Dec04)

Product trendlines

Product - ground site

Courtesy of Stackhouse and Zhang

Comparison of Monthly Surface SW√ fluxes 12 month running means, (Mar00-Dec04)

Product trendlines

Product - ground site

SRB, SRB(QC), SRBAVG and ISCCP in Comparison with TTS SWDW Monthly Means from 2000-03 to 2004-12 (12-Month Running Averaged) m^{-2}) ₹ SWDW SRB Bias = -6.17 (W m⁻²) ISCCP Bias = 0.79 (W m2) SRB RMS = 6.23 (W m²) ISCCP RMS = 1.88 (W m SRB $\sigma = 0.88 \, (W \, \text{m}^2)$ ISCCP σ = 1.73 (W m SRBQC Bias = 4.03 (W m⁻²) SRBQC RMS = 4.09 (W m2 SRB-TTS SWDW (W m²) SRBQC G = 0.73 (W m2) SRBQC-TTS SWDW (W m⁻²) SRBAVG Bias = 2.46 (W m2 SRBAVG-TTS SWDW (W m⁻²) SRBAVG RMS = 2.59 (W m2) ISCCP-TTS SWDW (W m2) SRBAVG $\sigma = 0.82 \text{ (W m}^2)$ 2003 2001 2002 2004 Time (Year)

Courtesy of Stackhouse and Zhang

Summary of Surface Flux Comparison

- The monthly SRBAVG surface (Model B) regional and ground fluxes are within the bias and RMS errors derived from instantaneous CERES footprint Model B (SOFA) and ground fluxes
 - 3 and 6 year SRBAVG results are very similar
 - SRBAVG surface fluxes show no discernable trends
 - SOFA SW cloudy sky overestimates, clear-sky underestimates
- Some surface stations (a point) may not representative of the 1° region, (coastal, terrain, etc.)

(%)	SW				LW	
	SOFA	SRB	AVG	SOFA	SRB.	AVG
		Mar00-	Mar00-		Mar00-	Mar00-
		Feb03	Dec05		Feb03	Dec05
Bias	3.3	3.2	3.6	-0.6	0.0	0.3
RMS	15.0	11.3	11.0	7.4	3.1	3.0

Comparison of GEO BB fluxes with SARB

Purpose

- To check the consistency between the fluxes and the given cloud property and atmospheric inputs
- SARB un-tuned flux estimates are from FU-Liou radiative transfer calculations based on input cloud properties and GEOS profiles

Method

- Compute SYN for July 2002 globally
- Compare with CERES fluxes and MODIS cloud properties as a baseline
- Compare with GEO derived broadband fluxes and GEO cloud properties
 - Errors due to both NB to BB and cloud property errors
- SYNI Beta1 results

Untuned - GEO TOA SW, July 2002

CERES fluxes and clouds

SYNI 200207 UNTuned-Obs Shortwave TOA Reflected Monthly Mean (CERES)

GEO fluxes and clouds

SYNI 200207 UNTuned-Obs Shortwave TOA Reflected Monthly Mean (GEO)

- GEO fluxes and clouds are more consistent than CERES over ocean
- However GEO has greater variability

Untuned - GEO TOA LW, July 2002

CERES fluxes and clouds

SYNI 200207 UNTuned-Obs Longwave TOA Monthly Mean (CERES)

GEO fluxes and clouds

SYNI 200207 UNTuned-Obs Longwave TOA Monthly Mean (GEO)

- CERES and GEO fluxes and clouds are consistent
- Same regional patterns shown by Tom Charlock

Courtesy of Fred Rose ley Research Center / Atmospheric Sciences

Comparison of crosstrack and RAPS SW flux

Purpose

- How consistent are the monthly means from cross-track and RAPS instrument for the same product?
- What are the effects of RAPS not completely sampling a 1° region?
- How well does the SW regional normalization technique work in RAPS mode?
- Can the CERES instrument calibration differences be observed in the monthly mean products?

Methodology

- Compare the nonGEO GEO fluxes from both crosstrack and RAPS mode
- Compare the RAPS crosstrack fluxes from both GEO and nonGEO product
- Error discovered in the SW regional normalization technique in RAPS mode will be corrected for Aqua

SW January 2002

nonGEO - GEO XTRK

RAPS -XTRK nonGEO

nonGEO - GEO RAPS

 Note the nonGEO - GEO global flux is consistent between XTRK and RAPS

RAPS - XTRK GEO

 Note the reduced RAPS-XTRK RMS of GEO compared with nonGEO

Summary of SRBAVG Ed 2D consistency checks

	SW		LW	
(%)	Bias	RMS	Bias	RMS
Terra-Aqua (instantaneous)	0.3 to 0.7	15.0	0.2 to 0.7	4.6
(day/night)			-0.5 to -0.3	4.5
Terra-Aqua (monthly)	1.0	4.2	-0.3	0.9
Surface (monthly)	3.2	11.3	0.0	3.1
SARB (instantaneous)	3.5	14.4	-0.6	5.1
GEO Calibration(monthly)	<0.1	<1.0	<0.1	<1.0
1 vs 3 hourly(monthly)	<0.1	2.5	<0.1	0.4
EOF	No GEO artifacts			
GEO directional	Co	nsistent	with CERES	

• All biases are < 1% or consistent with CERES fluxes (SW SARB and Surface)

5 Year Global Mean TOA Fluxes Mar00-Feb05

Wm-2	1986-1988	CERES Mar00 - Feb03			
All-Sky	ERBE	ERBE-like	nonGEO	GEO	
OLR	236.3	239.0	237.7	237.1	
SW	101.1	98.3	96.6	97.7	
NET	4.9	4.0	7.0	6.5	

ADM improvement Diurnal improvement

- Net imbalance within envelope of systematic errors of ocean heat storage, Solar constant and SW reflected flux - to be addressed by Norm Loeb
- 3,4,and 5 year annual means are very similar (mainly within 0.1 Wm⁻²)

3-Year Multi-Dataset TOA Flux Comparison

Observed

PROJECT	CLOUDS	PROFILE	FLUXES
CERES-ERBElike			measured
CERES-nonGEO	MODIS		measured
CERES-GEO	<i>MODIS+GEO</i>	GEOS	measured
CERES-SARB	MODIS+GEO	GEOS	Fu-Liou
SRB	ISCCP obs	GEOS	Fu-Liou
ISCCP-FD	ISCCP obs	TOVS	
GEOS-4	Modeled	GEOS	Chou
NCEP-reanalysis	Modeled	NCEP	
ECMWF-ERA40	Modeled		

Modeled

TOA global 5-year flux means (Mar00-Feb05)

	CERES	CERES	CERES	SRB	ISCCP	NCEP	GEOS4
Wm-2	ES-4	SRBAVG	SRBAVG	GEWEX	FD	REANAL-	
	ERBE-like	non-GEO	GEO			YSIS	
OLR _{ALL-SKY}	239.0	237.7	237.1	240.6	235.8	238.6	250.4
$SW_{ALL ext{-}SKY}$	98.3	96.6	97.7	101.2	105.2	117.2	92.4
NET _{ALL-SKY}	4.0	7.0	6.5	-2.5	0.5	-11.6	-1.0
OLR _{CLEAR-SKY}	266.6	266.4	264.1	268.1	262.3	270.3	271.5
SW _{CLEAR-SKY}	49.3	51.2	51.1	53.5	54.2	54.8	47.1
NET _{CLEAR-SKY}	25.4	23.7	26.2	17.7	25.0	19.1	23.1
OLR _{CLOUD-FORCING}	27.6	28.7	27.0	27.5	26.5	31.7	21.1
SW _{CLOUD-FORCING}	-49.0	-45.4	-46.6	-47.7	-51.0	-62.4	-45.3
NET _{CLOUD-FORCING}	-21.4	-16.7	-19.7	-20.2	-24.5	-30.7	-24.1

Global Cloud Amount Mar00-Dec05

Global TOA LW flux Mar00-Dec05

All-sky TOA L	W	Difference	Avg
nonGEO ———	237.8	nonGEO - GEO	 0.6
GEO	237.2		
SRB ———	240.6	SRB - GEO	3.4
ERBE_like ———	239.1	ERBE_like - GEO	1.9
NCEP	238.8	NCEP - GEO	 1.6
ECMWF ———	244.3	ECMWF - GEO	 6.9
ISCCP FD ———	235.8	ISCCP FD - GEO	 -1.4
GEOS4 ———	250.6	GEOS4 - GEO	13.4

Difference		Avg
nonGEO - GEO		0.0000
SRB - GEO		-0.0068
ERBE_like - GEO		0.0000
NCEP - GEO		-0.0000
opolizod		-0.0068
onalizeu _		-0.0048
	nonGEO - GEO SRB - GEO ERBE_like - GEO	SRB - GEO ———————————————————————————————————

Global TOA SW flux Mar00-Dec05

Global SFC Net SW flux Mar00-Dec05

All-sky SFC Net SV	/ Rev1	Difference	Avg
modelA ———		modelA - modelB	
modelB ———	170.6		
SRB ———	164.2	SRB - modelB	 -6.3
SRB_QC ———	160.2	SRB_QC - modelB	-10.4
NCEP	162.1	NCEP - modelB	 -8.5
ECMWF ———	153.8	ECMWF - modelB	 -16.3
ISCCP FD ———	165.6	ISCCP FD - modelB	-5.0
GEOS4 ———	180.9	GEOS4 - modelB	10.5

All-sky SFC Net SV	V Rev1	Difference		Avg
modelA ———		modelA - modelB		
modelB ———	0.0			
SRB ———	0.0	SRB - modelB		0.1
RB_QC ———	0.0	SRB_QC - modelB		0.1
NCEP	-0.0	NCEP - modelB		-0.0
ECMWF ———		FCMWF - modelR	_	
CCP FD ——		aaanali a aa	J —	0.1
GEOS4 ——	iesea	asonalized	<u> </u>	-0.0

Global SFC Net LW flux Mar00-Dec05

2.0	
Dec Oct Aug Jun Apr Feb De 2000 2001 2002 2003 2004 2005 200	ec 05
Difference (W/m²) O'A All-sky SFC Net LW Flux	ec 05

All-sky SFC Net	LW	Difference	Avg
modelA ———		modelA - modelB	
modelB ———	-48.0		
SRB ———	-54.4	SRB - modelB	 -6.4
SRB_QC ———	-51.2	SRB_QC - modelB	-3.2
NCEP	-60.4	NCEP - modelB	 -12.5
ECMWF ———	-53.0	ECMWF - modelB	 -5.0
ISCCP FD ———	-49.0	ISCCP FD - modelB	-1.1
GEOS4 ———	-62.9	GEOS4 - modelB	 -15.0

All-sky SFC Net	LW	Difference	Avg
modelA ———		modelA - modelB	
modelB ———	0.0		
SRB ———	-0.0	SRB - modelB	 0.0
SRB_QC ———	0.0	SRB_QC - modelB	0.0
NCEP	-0.0	NCEP - modelB	 -0.0
ECMWF ——		ECMME - modelR	
SCCP FD —		oopolized	 0.0
GEOS4 — Ut	25E3	sonalized	 0.0

Conclusions

- The CERES GEO product represents a major improvement over currently available global Earth energy budget datasets
- Incorporates CERES ADMs and MODIS scene identification to derive fluxes
- Uses geostationary derived fluxes to temporally interpolate between CERES measurements
 - GEO derived fluxes have been normalized with CERES to ensure unbiased fluxes with respect to region, cloud amount, SZA and VZA and geostationary calibration changes
 - GEO derived fluxes have been rigorously validated, <1% bias
- GEO nonGEO (Terra 10:30LT sampling) SW and LW monthly global flux difference is 1.1 Wm⁻² and -0.6 Wm⁻² respectively
 - Monthly regional SW differences can be > 20 Wm⁻² ,Monthly hourly > 100 Wm⁻²
- Mar00-May04 Terra GEO product currently available

Backup slides

TOA SW Cloud Forcing, Jan 2002

SRBAVG-GEO

ERBE_like - SRBAVG_GEO

• SW_{CF} = SW_{clear-sky} - SW_{all-sky} Blue is cooling, Red is warming

TOA LW Cloud Forcing, Jan 2002

SRBAVG-GEO

ERBE_like - SRBAVG_GEO

TOA NET Cloud Forcing, Jan 2002

SRBAVG-GEO

ERBE_like - SRBAVG_GEO

